Attenuation of ``Harmonics''

On each pass through the delay-line loop, a partial at frequency $ f$ is subject to an attenuation equal to the loop amplitude response $ \vert H(\omega T)\vert$.

The frequency response $ H(\omega T)$ of the simple lowpass filter may be found by testing with a complex sinusoid $ x(n) =
e^{\omega nT}$:

$\displaystyle y(n)$ $\displaystyle =$ $\displaystyle x(n) + x(n-1)$  
  $\displaystyle =$ $\displaystyle e^{j\omega nT} + e^{j\omega (n-1)T}$  
  $\displaystyle =$ $\displaystyle e^{j\omega nT} + e^{j\omega nT}e^{-j\omega T}$  
  $\displaystyle =$ $\displaystyle (1 + e^{-j\omega T})e^{\omega nT}$  
  $\displaystyle =$ $\displaystyle (1 + e^{-j\omega T})x(n),$  

where $ H(e^{j\omega T}) = (1 + e^{-j\omega T})$.

The gain of the filter is given by

$\displaystyle G(\omega)$ $\displaystyle =$ $\displaystyle \vert H(e^{j\omega T})\vert$  
  $\displaystyle =$ $\displaystyle \vert(1 + e^{-j\omega T})\vert$  
  $\displaystyle =$ $\displaystyle \vert(e^{j\omega T/2} +e^{-j\omega T/2}) e^{-j\omega T/2}\vert$  
  $\displaystyle =$ $\displaystyle \vert 2\cos(\omega T/2) e^{-j\omega T/2}\vert$  
  $\displaystyle =$ $\displaystyle 2\cos(\omega T/2)$  


``Music 206: Introduction to Delay and Filters II'' by Tamara Smyth, Computing Science, Simon Fraser University.
Download PDF version (filtersDelayII.pdf)
Download compressed PostScript version (filtersDelayII.ps.gz)
Download PDF `4 up' version (filtersDelayII_4up.pdf)
Download compressed PostScript `4 up' version (filtersDelayII_4up.ps.gz)

Copyright © 2019-04-18 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>