Transfer Functions with Multiple Terms

If the transfer function has multiple terms, then the output will be the sum of the contributions of each term.

For example, the transfer function

$\displaystyle F(x) = x + x^2 + x^3 + x^4 + x^5
$

produces an output spectrum with the following harmonic amplitudes:
$\displaystyle h_0$ $\displaystyle =$ $\displaystyle \frac{1}{2}(2) + \frac{1}{8}(6) = 1.75$  
$\displaystyle h_1$ $\displaystyle =$ $\displaystyle 1 + \frac{1}{4}(3) + \frac{1}{16}(10) = 2.375$  
$\displaystyle h_2$ $\displaystyle =$ $\displaystyle \frac{1}{2}(1) + \frac{1}{8}(4) = 1.0$  
$\displaystyle h_3$ $\displaystyle =$ $\displaystyle \frac{1}{4}(1) + \frac{1}{16}(5) = 0.5625$  
$\displaystyle h_4$ $\displaystyle =$ $\displaystyle \frac{1}{8}(1) = 0.125$  
$\displaystyle h_5$ $\displaystyle =$ $\displaystyle \frac{1}{16}(1) = 0.0625$  

Figure 10: Output spectrum of the transfer function $ y = x+x^2+x^3+x^4+x^5$, where $ x$ is a unit amplitude sinusoid at a frequency of 220 Hz.
\scalebox{0.8}{\includegraphics{eps/x1x5.eps}}


``Music 270a: Waveshaping Synthesis'' by Tamara Smyth, Department of Music, University of California, San Diego (UCSD).
Download PDF version (waveshaping.pdf)
Download compressed PostScript version (waveshaping.ps.gz)
Download PDF `4 up' version (waveshaping_4up.pdf)
Download compressed PostScript `4 up' version (waveshaping_4up.ps.gz)

Copyright © 2019-03-03 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>