Analytic Signals

The real sinusoid $ x(t) = A\cos(\omega t + \phi)$ can be converted to an analytic signal, by generating a phase quadrature component,

$\displaystyle y(t) = A\sin(\omega t + \phi),
$

to serve as the imaginary part.
  1. Consider the positive and negative frequency components of a real sinusoid at frequency $ \omega_0$:
    $\displaystyle x_{+}$ $\displaystyle \triangleq$ $\displaystyle e^{j\omega_0 t}$  
    $\displaystyle x_{-}$ $\displaystyle \triangleq$ $\displaystyle e^{-j\omega_0 t}.$  

  2. Apply a phase shift of $ -\pi/2$ radians to the positive-frequency component,

    $\displaystyle y_{+} = e^{-j\pi/2}e^{j\omega_0 t} = -je^{j\omega_0 t}
$

    and a phase shift of $ \pi/2$ to the negative-frequency component,

    $\displaystyle y_{-} = e^{j\pi/2}e^{-j\omega_0 t} = je^{-j\omega_0 t}.
$

  3. Form a new complex signal by adding them together:
    $\displaystyle z_{+}(t)$ $\displaystyle \triangleq$ $\displaystyle x_{+}(t) + jy_{+}(t) = e^{j\omega_0t} - j^2e^{j\omega_0t}=2e^{j\omega_0t}$  
    $\displaystyle z_{-}(t)$ $\displaystyle \triangleq$ $\displaystyle x_{-}(t) + jy_{-}(t) = e^{-j\omega_0t} + j^2e^{-j\omega_0t} = 0.$  


``Music 270a: Complex Exponentials and Spectrum Representation'' by Tamara Smyth, Department of Music, University of California, San Diego (UCSD).
Download PDF version (compExpAndSpecRep.pdf)
Download compressed PostScript version (compExpAndSpecRep.ps.gz)
Download PDF `4 up' version (compExpAndSpecRep_4up.pdf)
Download compressed PostScript `4 up' version (compExpAndSpecRep_4up.ps.gz)

Copyright © 2019-10-21 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>