Converting from Cartesian to Polar

Figure 3: Cartesian and polar representations of complex numbers in the complex plane.
\begin{figure}\centerline{%
\input{complexplane.pstex_t}}\end{figure}

Using trigonometric identities and the Pythagorean theorem, we can compute:

  1. The Cartesian coordinates$ (x, y)$ from the polar variables $ r\angle\theta$:

    $\displaystyle x = r\cos\theta$   and$\displaystyle \quad y=r\sin\theta
$

  2. The polar coordinates from the Cartesian:

    $\displaystyle r = \sqrt{x^2 + y^2}$   and$\displaystyle \quad \theta = \arctan\left(\frac{y}{x}\right)
$


``Music 270a: Complex Exponentials and Spectrum Representation'' by Tamara Smyth, Department of Music, University of California, San Diego (UCSD).
Download PDF version (compExpAndSpecRep.pdf)
Download compressed PostScript version (compExpAndSpecRep.ps.gz)
Download PDF `4 up' version (compExpAndSpecRep_4up.pdf)
Download compressed PostScript `4 up' version (compExpAndSpecRep_4up.ps.gz)

Copyright © 2019-10-21 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>