Changing Filter Coefficients

The difference (instead of the sum) of adjacent samples:

$\displaystyle y(n) = x(n) - x(n-1).
$

is like changing the coefficient of $ x(n-1)$ to -1.

At 0 Hz:

$\displaystyle y(n)$ $\displaystyle =$ $\displaystyle x_1(n) - x_1(n-1)$  
  $\displaystyle =$ $\displaystyle \quad [A, A, A, ....]$  
$\displaystyle  $   $\displaystyle -$     $\displaystyle [0, A, A, A, ...]$  
  $\displaystyle =$ $\displaystyle \quad [A, 0, 0, 0, ...]$  
  $\displaystyle \approx$ $\displaystyle 0x_1(n).$  

At $ f_s/2$ Hz:

$\displaystyle y(n)$ $\displaystyle =$ $\displaystyle x_2(n) - x_2(n-1)$  
  $\displaystyle =$ $\displaystyle \quad [A, -A, A, -A, ...]$  
$\displaystyle  $   $\displaystyle -$     $\displaystyle [0, A, -A, A, ...]$  
  $\displaystyle =$ $\displaystyle \quad [A, -2A, 2A, -2A, ...]$  
  $\displaystyle \approx$ $\displaystyle 2x_2(n).$  


``Music 171: Introduction to Delay and Filters'' by Tamara Smyth, Computing Science, Simon Fraser University.
Download PDF version (filt171.pdf)
Download compressed PostScript version (filt171.ps.gz)
Download PDF `4 up' version (filt171_4up.pdf)
Download compressed PostScript `4 up' version (filt171_4up.ps.gz)

Copyright © 2019-11-21 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>