Transfer Function

The transfer function is the ratio of the output to the input.

Group the $ Y(z)$ terms together on the left hand side and factor out common terms $ X(z)$ and $ Y(z)$:

$\displaystyle Y(z)[1 + a_1z^{-1}+\cdots+a_Nz^{-N}] =$      
$\displaystyle X(z)[b_0 + b_1z^{-1}+\cdots+b_Mz^{-M}]$      

In defining the following polynomials:

$\displaystyle A(z)$ $\displaystyle \triangleq$ $\displaystyle 1 + a_1z^{-1}+\cdots+z_{N}z^{-N}$  
$\displaystyle B(z)$ $\displaystyle \triangleq$ $\displaystyle b_0 + b_1z^{-1}+\cdots+b_{M}z^{-M},$  

the $ z$ transform of the difference equation becomes

$\displaystyle A(z)Y(z) = B(z)X(z).
$

In solving for $ Y(z)/X(z)$ we obtain the transfer function

$\displaystyle H(z) = \frac{Y(z)}{X(z)} = \frac{B(z)}{A(z)},
$

where $ X(z)$ and $ Y(z)$ are the $ z$ transforms of the input and output signal, respectively.

$ H(z)$ is the $ z$ transform of the impulse response describing the filter.


``Mus 270a: Introduction to Digital Filters'' by Tamara Smyth, Department of Music, University of California, San Diego.
Download PDF version (filters.pdf)
Download compressed PostScript version (filters.ps.gz)
Download PDF `4 up' version (filters_4up.pdf)
Download compressed PostScript `4 up' version (filters_4up.ps.gz)

Copyright © 2019-02-25 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>