Coefficients as Impulse Response

The impulse response $ y(n)=h(n)$ is equivalent to coefficients of our FIR filter $ b_k$.

This can be shown using the general FIR equation, with input $ x(n) = \delta(n)$ (recall $ \delta$ only has a nonzero value when $ n=0$).

$\displaystyle h(0)$ $\displaystyle =$ $\displaystyle b_0\delta(0) + b_1\cancelto{0}{\delta(0-1)} + b_2\cancelto{0}{\delta(0-2)} + ...$  
  $\displaystyle =$ $\displaystyle b_0,$  
$\displaystyle h(1)$ $\displaystyle =$ $\displaystyle b_0\cancelto{0}{\delta(1)} + b_1\delta(1-1) + b_2\cancelto{0}{\delta(1-2)} + ...$  
  $\displaystyle =$ $\displaystyle b_1,$  
$\displaystyle h(2)$ $\displaystyle =$ $\displaystyle b_0\delta(2) + b_1\delta(2-1) + b_2\delta(2-2) + ...$  
  $\displaystyle =$ $\displaystyle b_2,$  
$\displaystyle ...$      

When the relation between the input $ x(n)$ and the output $ y(n)$ of the FIR filter is expressed in terms of the input and impulse response, we say the output is obtained by convolving the sequences $ x(n)$ and $ h(n)$.


``Music 206: Delay and Digital Filters I'' by Tamara Smyth, Computing Science, Simon Fraser University.
Download PDF version (filtersDelayI.pdf)
Download compressed PostScript version (filtersDelayI.ps.gz)
Download PDF `4 up' version (filtersDelayI_4up.pdf)
Download compressed PostScript `4 up' version (filtersDelayI_4up.ps.gz)

Copyright © 2020-01-14 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>