Sinusoids

``Sinusoids'' may be represented using both sine and cosine functions having the form:

$\displaystyle \textcolor{blue}{
x(t) = A\sin(\omega t + \phi) \quad \mbox{\textcolor{black}{or}} \quad
x(t) = A\cos(\omega t + \phi),
}
$

where $ x(t)$ is the quantity that varies over time and
$\displaystyle A$ $\displaystyle \triangleq$ peak amplitude  
$\displaystyle \omega$ $\displaystyle \triangleq$ radian frequency (rad/sec)$\displaystyle = 2\pi f$  
$\displaystyle f$ $\displaystyle \triangleq$ frequency (Hz)  
$\displaystyle t$ $\displaystyle \triangleq$ time (seconds)  
$\displaystyle \phi$ $\displaystyle \triangleq$ initial phase (radians)  

Figure 1: Sinusoid where $ A=2$, $ \omega = 2\pi 5$, and $ \phi = \pi /4$.
\scalebox{0.8}{\includegraphics{eps/plotsin.eps}}


``Music 171: Sinusoids'' by Tamara Smyth, Department of Music, University of California, San Diego (UCSD).
Download PDF version (sinusoids171.pdf)
Download compressed PostScript version (sinusoids171.ps.gz)
Download PDF `4 up' version (sinusoids171_4up.pdf)
Download compressed PostScript `4 up' version (sinusoids171_4up.ps.gz)

Copyright © 2019-10-03 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>