PE and KE in the mass-spring oscillator

All vibrating systems consist of this interplay between an energy storing component and an energy carrying (``massy'') component.

The potential energy PE of the ideal mass-spring system is equal to the work done1 stretching or compressing the spring:

$\displaystyle PE$ $\displaystyle =$ $\displaystyle \frac{1}{2} K x^{2},$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} K A^{2} \cos^{2}(\omega_{0}t + \phi).$  

The kinetic energy KE in the system is given by the motion of mass:

$\displaystyle KE$ $\displaystyle =$ $\displaystyle \frac{1}{2} m v^{2},$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} \cancelto{K}{m\omega_{0}^{2}} A^{2} \sin^{2}(\omega_{0}t +
\phi)$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} K A^{2}\sin^{2}(\omega_{0}t + \phi).$  


``MUS 206: Mechanical Vibration'' by Tamara Smyth, Department of Music, University of California, San Diego (UCSD).
Download PDF version (vibration.pdf)
Download compressed PostScript version (vibration.ps.gz)
Download PDF `4 up' version (vibration_4up.pdf)
Download compressed PostScript `4 up' version (vibration_4up.ps.gz)

Copyright © 2019-11-15 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>