Solution to Equation of Motion

The solution to

$\displaystyle m\frac{d^2x}{dt^2} = -Kx,
$

is a function proportional to its second derivative.

This condition is met by the sinusoid:

$\displaystyle x$ $\displaystyle =$ $\displaystyle A\cos(\omega_0t + \phi)$  
$\displaystyle \frac{dx}{dt}$ $\displaystyle =$ $\displaystyle -\omega_0A\sin(\omega_0t + \phi)$  
$\displaystyle \frac{d^2x}{dt^2}$ $\displaystyle =$ $\displaystyle -\omega_0^2A\cos(\omega_0t + \phi)$  

Substituting into the equation of motion yields:

$\displaystyle m\frac{d^2x}{dt^2}$ $\displaystyle =$ $\displaystyle -Kx,$  
$\displaystyle -\omega_0^2\cancel{A\cos(\omega_0 t + \phi)}$ $\displaystyle =$ $\displaystyle -\frac{K}{m}\cancel{A\cos(\omega_0 t + \phi)},$  

showing that the natural frequency of vibration is

$\displaystyle \omega_0 = \sqrt{\frac{K}{m}}.
$


``MUS 206: Mechanical Vibration'' by Tamara Smyth, Department of Music, University of California, San Diego (UCSD).
Download PDF version (vibration.pdf)
Download compressed PostScript version (vibration.ps.gz)
Download PDF `4 up' version (vibration_4up.pdf)
Download compressed PostScript `4 up' version (vibration_4up.ps.gz)

Copyright © 2019-11-15 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>