The first few Chebyshev Polynomials of the first kind

For your convenience, here are some of the first few:


$\displaystyle T_0(k)$ $\displaystyle =$ $\displaystyle 1$  
$\displaystyle T_1(k)$ $\displaystyle =$ $\displaystyle x$  
$\displaystyle T_2(k)$ $\displaystyle =$ $\displaystyle 2x^2-1$  
$\displaystyle T_3(k)$ $\displaystyle =$ $\displaystyle 4x^3-3x$  
$\displaystyle T_4(k)$ $\displaystyle =$ $\displaystyle 8x^4-8x^2 + 1$  
$\displaystyle T_5(k)$ $\displaystyle =$ $\displaystyle 16x^5 - 20x^3 + 5x$  

The rest may be generated in Matlab using the following:

T(:, 1) = ones(length(x), 1);
T(:, 2) = x;
for n = 3:Hmax+1
  T(:, n) = 2*x.*T(:,n-1) - T(:,n-2);
end


``Music 270a: Waveshaping Synthesis'' by Tamara Smyth, Department of Music, University of California, San Diego (UCSD).
Download PDF version (waveshaping.pdf)
Download compressed PostScript version (waveshaping.ps.gz)
Download PDF `4 up' version (waveshaping_4up.pdf)
Download compressed PostScript `4 up' version (waveshaping_4up.ps.gz)

Copyright © 2019-03-03 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>