Matrix Formulation of the $ N$-port

If

$\displaystyle \mathbf{p}^+ =
\begin{bmatrix}
p_1^+\\
p_2^+\\
\cdot\\
\cd...
...egin{bmatrix}
p_1^-\\
p_2^-\\
\cdot\\
\cdot\\
p_N^-\\
\end{bmatrix},
$

$\displaystyle \mathbf{A} =
\begin{bmatrix}
1 & -1 & 0 & 0 & ... & 0 & 0\\
0 & ...
...frac{1}{Z_4^+} & ... & \frac{1}{Z_{N-1}^+} & \frac{1}{Z_N^+}\\
\end{bmatrix},
$

$\displaystyle \mathbf{B} =
-\begin{bmatrix}
1 & -1 & 0 & 0 & ... & 0 & 0\\
0 &...
...frac{1}{Z_4^-} & ... & \frac{1}{Z_{N-1}^-} & \frac{1}{Z_N^-}\\
\end{bmatrix},
$

then we can write

$\displaystyle \mathbf{Ap}^+ = \mathbf{Bp}^-,
$

and

$\displaystyle \mathbf{p}^- = \mathbf{B}^{-1}\mathbf{Ap}^+.
$


``MUS 206: Modeling Acoustic Tubes and Wind Instrument Bores/Bells'' by Tamara Smyth, Department of Music, University of California, San Diego (UCSD).
Download PDF version (wind.pdf)
Download compressed PostScript version (wind.ps.gz)
Download PDF `4 up' version (wind_4up.pdf)
Download compressed PostScript `4 up' version (wind_4up.ps.gz)

Copyright © 2019-05-22 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>