Changing Filter Coefficients

Consider the following variation on the two-point averager (lowpass filter):

$\displaystyle y(n) = x(n) - x(n-1).
$

How does changing the addition to a subtraction change the filter?

\fbox{\parbox{5in}{Changing the addition to a subtraction changes the
\emph{coefficients} of the filter.}}

At DC the output becomes

$\displaystyle y(n)$ $\displaystyle =$ $\displaystyle x_1(n) - x_1(n-1)$  
  $\displaystyle =$ $\displaystyle \quad [A, A, A, ....]$  
$\displaystyle  $   $\displaystyle -$     $\displaystyle [0, A, A, A, ...]$  
  $\displaystyle =$ $\displaystyle \quad [A, 0, 0, 0, ...]$  

At the Nyquist limit the output becomes

$\displaystyle y(n)$ $\displaystyle =$ $\displaystyle x_2(n) - x_2(n-1)$  
  $\displaystyle =$ $\displaystyle \quad [A, -A, A, ....]$  
$\displaystyle  $   $\displaystyle -$     $\displaystyle [0, A, -A, A, ...]$  
  $\displaystyle =$ $\displaystyle \quad [A, -2A, 2A, -2A, ...]$  


``Music 206: Delay and Digital Filters I'' by Tamara Smyth, Computing Science, Simon Fraser University.
Download PDF version (filtersDelayI.pdf)
Download compressed PostScript version (filtersDelayI.ps.gz)
Download PDF `4 up' version (filtersDelayI_4up.pdf)
Download compressed PostScript `4 up' version (filtersDelayI_4up.ps.gz)

Copyright © 2020-01-14 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>