Modulation Index

The function $ I(t)$, called the modulation index envelope, determines significantly the harmonic content of the sound.

Given the general FM equation

$\displaystyle x(t) = A(t)\left[\cos(2\pi f_ct + I(t)\cos(2\pi f_mt + \phi_m) + \phi_c\right],
$

the instantaneous frequency $ f_i(t)$ (in Hz) is given by
$\displaystyle f_i(t)$ $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\frac{d}{dt}\theta(t)$  
  $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\frac{d}{dt}\left[2\pi f_ct + I(t)\cos(2\pi f_mt + \phi_m) + \phi_c\right]$  
  $\displaystyle =$ $\displaystyle \frac{1}{2\pi}[2\pi f_c - I(t)\sin(2\pi f_mt + \phi_m)2\pi f_m +$  
    $\displaystyle \qquad \qquad \frac{d}{dt}I(t)\cos(2\pi f_m t + \phi_m)]$  
  $\displaystyle =$ $\displaystyle f_c - I(t)f_m\sin(2\pi f_mt + \phi_m) +$  
    $\displaystyle \qquad \qquad \frac{1}{2\pi}\frac{d}{dt}I(t)\cos(2\pi f_mt + \phi_m).$  


``Music 270a: Modulation'' by Tamara Smyth, Department of Music, University of California, San Diego (UCSD).
Download PDF version (modulation.pdf)
Download compressed PostScript version (modulation.ps.gz)
Download PDF `4 up' version (modulation_4up.pdf)
Download compressed PostScript `4 up' version (modulation_4up.ps.gz)

Copyright © 2019-10-28 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>