Valve Transfer Function

Using the Bilinear Transform, the transfer function becomes

$\displaystyle \frac{X(z)}{F(z)+kx_0} = \frac{1+2z^{-1}+z^{-2}}{a_0+a_1z^{-1}+a_2z^{-2}},
$

where
$\displaystyle a_0$ $\displaystyle =$ $\displaystyle mc^2 + mgc + k,$  
$\displaystyle a_1$ $\displaystyle =$ $\displaystyle -2(mc^2-k),$  
$\displaystyle a_2$ $\displaystyle =$ $\displaystyle mc^2 -mgc + k.$  

The corresponding difference equation is
$\displaystyle x(n)$ $\displaystyle =$ $\displaystyle \frac{1}{a_0}[F_k(n) + 2F_k(n-1) + F_k(n-2)) -$  
    $\displaystyle a_1x(n-1) -a_2x(n-2)],$  

where $ F_k(n) = F(n) + kx_0$.


``MUS 206: Modeling Acoustic Tubes and Wind Instrument Bores/Bells'' by Tamara Smyth, Department of Music, University of California, San Diego (UCSD).
Download PDF version (wind.pdf)
Download compressed PostScript version (wind.ps.gz)
Download PDF `4 up' version (wind_4up.pdf)
Download compressed PostScript `4 up' version (wind_4up.ps.gz)

Copyright © 2019-05-22 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>